If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-19x+5=0
a = 10; b = -19; c = +5;
Δ = b2-4ac
Δ = -192-4·10·5
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{161}}{2*10}=\frac{19-\sqrt{161}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{161}}{2*10}=\frac{19+\sqrt{161}}{20} $
| 3u+2u-u-3u+u=20 | | 5-2(8x+4)=-3-16x | | b-4+2b=24 | | 3x+(3x+5)=11 | | 6+1.50x=36 | | 8z-8z+5z=20 | | -2x+3+6(x+2)=-6x-15 | | x^2+5x+6=2x^2 | | 8z-8z+52=20 | | 12j+4j-11j+2j=14 | | (2b1)-bb=-4 | | 2+0.5xX=5 | | 9x-8-4x=x+9+x | | 12j+4j−11j+2j=14 | | −19(y−3)=16(y−16) | | 18+2x/4=16 | | 18s-13s=20 | | 4(2n-3)=4n+3 | | 20+8n=-2n-20 | | -1.2=11.6+u/8 | | 14q-11q=18 | | 7t-6t=18 | | c2=64/225 | | 6(2+3z=3(4+6z) | | z/5+3=-55 | | 13p=9+16p | | v+3=(v-7) | | 0.25k=3(−0.25k+3) | | -3.6y=-10.8 | | 10p-p=18 | | 10.5-3y=9 | | 3x+16+2x-4=62 |